【题目】定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.
理解:
(1)如图1,在
中,
,点
在
边上,且
,求
的大小;
(2)在图1中过点
作一条线段
,使
,
是
的“好好线”;
在图2中画出顶角为
的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);
应用:
(3)在
中,
,
和
是
的“好好线”,点
在
边上,点
在
边上,且
,
,请求出
的度数.
![]()
参考答案:
【答案】(1)36°;(2)见详解;(3)18°或42°
【解析】
(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.
(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;
(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;
解:(1)∵AB=AC,
∴∠ABC=∠C,
∵BD=BC=AD,
∴∠A=∠ABD,∠C=∠BDC,
设∠A=∠ABD=x,则∠BDC=2x,∠C=
可得![]()
∴x=36°
则∠A=36°;
(2)如图所示:![]()
(3)如图所示:![]()
①当AD=AE时,
∵2x+x=27°+27°,
∴x=18°;
②当AD=DE时,
∵27°+27°+2x+x=180°,
∴x=42°;
综上所述,∠C为18°或42°的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,经过点A的双曲线y=
(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以正方形ABCD的边AD为一边作等边三角形ADE,F是DE的中点,BE、AF相交于点G,连接DG,若正方形ABCD的面积为36,则BG=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )

A. 20 B. 25 C. 30 D. 32
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;
(2)将上面的条形统计图补充完整;
(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;
(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t
(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了30分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有320米
其中正确的结论有( )

A. 1 个B. 2 个C. 3 个D. 4 个
相关试题