【题目】某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.
(1)求这种笔和本子的单价;
(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.
参考答案:
【答案】
(1)解:设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:
=
,
解得:x=10,
经检验:x=10是原分式方程的解,
则x﹣4=6.
答:这种笔单价为10元,则本子单价为6元;
(2)解:设恰好用完100元,可购买这种笔m支和购买本子n本,
由题意得:10m+6n=100,
整理得:m=10﹣
n,
∵m、n都是正整数,
∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;
∴有三种方案:
①购买这种笔7支,购买本子5本;
②购买这种笔4支,购买本子10本;
③购买这种笔1支,购买本子15本.
【解析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程
=
,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.
【考点精析】根据题目的已知条件,利用分式方程的应用的相关知识可以得到问题的答案,需要掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(﹣
)﹣2+(π﹣
)0﹣|
﹣
|+tan60°+(﹣1)2017 . -
科目: 来源: 题型:
查看答案和解析>>【题目】由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负. 如果小王和小张按上述规则各转动转盘一次,则

(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.

(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=
,求AF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.

(1)求证:EF是⊙O的切线;
(2)求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.

(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是( )
A.3
B.4
C.8
D.9
相关试题