【题目】已知:如图①,在矩形ABCD中,AB=5,AD=
,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.
![]()
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
参考答案:
【答案】(1)4,3;(2)3或
.(3)DQ的长度分别为
、
;
或
.
【解析】试题分析:(1)利用矩形性质、勾股定理及三角形面积公式求解;
(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;
(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.
试题解析:(1)在Rt△ABD中,AB=5,AD=
,
由勾股定理得:BD=
=
=
.
∵
=
BDAE=
ABAD,
∴AE=
=4.
在Rt△ABE中,AB=5,AE=4,
由勾股定理得:BE=3;
(2)设平移中的三角形为△A′B′F′,如答图2所示:
由对称点性质可知,∠1=∠2.
由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.
![]()
①当点F′落在AB上时,
∵AB∥A′B′,
∴∠3=∠4,
∴∠3=∠2,
∴BB′=B′F′=3,即m=3;
②当点F′落在AD上时,
∵AB∥A′B′,
∴∠6=∠2,
∵∠1=∠2,∠5=∠1,
∴∠5=∠6,
又易知A′B′⊥AD,
∴△B′F′D为等腰三角形,
∴B′D=B′F′=3,
∴BB′=BD﹣B′D=
﹣3=
,即m=
;
(3)存在.理由如下:
在旋转过程中,等腰△DPQ依次有以下4种情形:
①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,
![]()
∵∠1=∠3+∠Q,∠1=∠2,
∴∠3=∠Q,
∴A′Q=A′B=5,
∴F′Q=F′A′+A′Q=4+5=9.
在Rt△BF′Q中,由勾股定理得:BQ=
=
.
∴DQ=BQ﹣BD=
;
②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,易知∠2=∠P,
![]()
∵∠1=∠2,
∴∠1=∠P,
∴BA′∥PD,则此时点A′落在BC边上.
∵∠3=∠2,
∴∠3=∠1,
∴BQ=A′Q,
∴F′Q=F′A′﹣A′Q=4﹣BQ.
在Rt△BQF′中,由勾股定理得:
,
即
,
解得:BQ=
,
∴DQ=BD﹣BQ=
=
;
③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.
![]()
∵∠2+∠3+∠4=180°,∠3=∠4,
∴∠4=90°﹣
∠2.
∵∠1=∠2,
∴∠4=90°﹣
∠1.
∴∠A′QB=∠4=90°﹣
∠1,
∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣
∠1,
∴∠A′QB=∠A′BQ,
∴A′Q=A′B=5,
∴F′Q=A′Q﹣A′F′=5﹣4=1.
在Rt△BF′Q中,由勾股定理得:BQ=
=
,
∴DQ=BD﹣BQ=
;
④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.
![]()
∵∠1=∠2,∠3=∠4,∠2=∠3,
∴∠1=∠4,
∴BQ=BA′=5,
∴DQ=BD﹣BQ=
﹣5=
.
综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;
DQ的长度分别为
或
或
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:

(1)△ACE≌△BCD;
(2)AD2+DB2=DE2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线y=x﹣2与x轴、y轴分别交于点E,F.

(1)求矩形ABCD的顶点A,B,C,D的坐标;
(2)求证:△OEF≌△BEC;
(3)P为直线y=x﹣2上一点,若S△POE=5,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( ).
A. a+b=ab B. a2·a3=a5 C. a2+2ab-b2=(a-b)2 D. 3a-2a=1
-
科目: 来源: 题型:
查看答案和解析>>【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成.印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表.
总印数a(单位:千册)
1≤a<5
5≤a<10
彩色(单位:元∕张)
2.2
2.0
黑白(单位:元∕张)
0.7
0.5
(1)印制这批纪念册的制版费为多少元.
(2)若印制A、B两种纪念册各2千册,则共需多少费用?
(3)如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)图2中间的小正方形(即阴影部分)面积可表示为 .
(2)观察图2,请你写出三个代数式(m+n)2 , (m﹣n)2 , mn之间的等量关系式: .
(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= .
(4)有许多代数恒等式可以用图形的面积来表示.如图3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2 . 试画出一个几何图形,使它的面积能表示为(m+n)(m+2n)=m2+3mn+2n2 .
相关试题