【题目】如图,O的直径为AB,点C在圆周上(异于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分线,求证:直线CD是O的切线.


参考答案:

【答案】(1) AC=4;(2)详见解析.

【解析】

试题分析:(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OCCD即可;利用角平分线的性质和等边对等角,可证得OCA=CAD,即可得到OCAD,由于ADCD,那么OCCD,由此得证.

试题解析:(1)解:AB是O直径,C在O上,

∴∠ACB=90°,

BC=3,AB=5,

由勾股定理得AC=4;

(2)证明:连接OC

AC是DAB的角平分线,

∴∠DAC=BAC,

ADDC,

∴∠ADC=ACB=90°,

∴△ADC∽△ACB,

∴∠DCA=CBA,

OA=OC,

∴∠OAC=OCA,

∵∠OAC+OBC=90°,

∴∠OCA+ACD=OCD=90°,

DC是O的切线.

关闭