【题目】如图,直线y=﹣x+b与反比例函数y=
的图形交于A(a,4)和B(4,1)两点. ![]()
(1)求b,k的值;
(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=
的值时,直接写出自变量x的取值范围;
(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.
参考答案:
【答案】
(1)解:∵直线y=﹣x+b过点 B(4,1),
∴1=﹣4+b,
解得b=5;
∵反比例函数y=
的图象过点 B(4,1),
∴k=4;
(2)解:由图可得,在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=
的值时,1<x<4;
(3)解:将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,
∵直线y=﹣x+5﹣m与双曲线y=
只有一个交点,
令﹣x+5﹣m=
,整理得x2+(m﹣5)x+4=0,
∴△=(m﹣5)2﹣16=0,
解得m=9或1.
【解析】(1)根据直线y=﹣x+b与反比例函数y=
的图形交于A(a,4)和B(4,1)两点,即可得到b,k的值;(2)运用数形结合思想,根据图象中,直线与双曲线的上下位置关系,即可得到自变量x的取值范围;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=
,可得△=(m﹣5)2﹣16,当直线与双曲线只有一个交点时,根据△=0,可得m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC分别相交于E、F,若已知AB=9,AC=7,求△AEF的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,
≈1.41)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.
(1)证明:△BCE≌△CAD;
(2)若AD=25cm,BE=8cm,求DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点D为△ABC边BC的延长线上一点.

(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;
(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.
求证:
;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A、a2﹣2ab+b2=(a﹣b)2
B、a2﹣b2=(a+b)(a﹣b)
C、a2+ab=a(a+b)
(2)应用你从(1)选出的等式,完成下列各题:
①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②计算:(1﹣
)(1﹣
)(1﹣
)…(1﹣
)(1﹣
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出 A′、B′、C′的坐标,并在图中画出平移后图形.
(3)求出三角形ABC的面积.

相关试题