【题目】菱形ABCD中,∠B=60°,AB=4,点E在BC上,CE=2
,若点P是菱形上异于点E的另一点,CE=CP,则EP的长为_____.
参考答案:
【答案】6或2
或3
﹣
.
【解析】
连接EP交AC于点H,依据菱形的性质可得到∠ECH=∠PCH=60°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据PE=EH求解即可.
解:如图所示:连接EP交AC于点H.
![]()
∵菱形ABCD中,∠B=60°,
∴∠BCD=120°,∠ECH=∠PCH=60°.
在△ECH和△PCH中
,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴OC=
EC=
.
∴EH=3,
∴EP=2EH=6.
如图2所示:当P在AD边上时,△ECP为等腰直角三角形,则
.
![]()
当P′在AB边上时,过点P′作P′F⊥BC.
∵P′C=2
,BC=4,∠B=60°,
∴P′C⊥AB.
∴∠BCP′=30°.
∴
.
∴
.
故答案为6或2
或3
﹣
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,4),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )

A. 1 B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1 , 边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2 , 以A2F2为边作正六边形A2B2C2D2E2F2 , 边C2D2所在的直线分别交OM、ON于点A3、F3 , 再以A3F3为边作正六边形A3B3C3D3E3F3 , …,依此规律,经第n次作图后,点Bn到ON的距离是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

①画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
②画出△ABC向下平移3个单位的△AB2C2 , 并写出点C的对应点C2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若
,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=
,当
>2时,求EC的长度。[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
相关试题