【题目】如图:在等边三角形ABC中,点E在线段AB上,点D在CB的延长线上,![]()
![]()
(1)试证明△DEC是等腰三角形;(2)在图中找出与AE相等的线段,并证明
参考答案:
【答案】(1)证明见解析;(2)BD=AE,证明见解析.
【解析】
(1)根据等边三角形的性质可得∠ABC=∠ACB,由三角形外角的性质可得∠ABC=∠D+∠DEB,再根据∠ACB=∠ACE+∠ECB,∠ACE=∠DEB,推得∠D=∠ECB即可得到结论;
(2)图中BD=AE,证明过程为:在AC上截取AF=AE,则可得△AEF是等边三角形,通过推导得出BE=CF,AE=EF,∠EFC=∠DBE,然后利用ASA证明△DEB≌△ECF,根据全等三角形的性质以及等量代换即可得.
(1)∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵∠ABC是△DBE的外角,
∴∠ABC=∠D+∠DEB,
∵∠ACB=∠ACE+∠ECB,∠ACE=∠DEB,
∴∠D=∠ECB,
∴ED=EC,
即△DEC是等腰三角形;
(2)BD=AE,证明如下:
如图,在AC上截取AF=AE,
![]()
∵△ABC是等边三角形,
∴∠A=∠ABC=60°,AB=AC,
∴∠EBD=120°,AB-AE=AC-AF,△AEF是等边三角形,
∴BE=CF,AE=EF,∠AFE=60°,
∴∠EFC=120°,
∴∠EFC=∠DBE,
在△DBE和△EFC中,
,
∴△DEB≌△ECF,
∴BD=EF,
∴BD=AE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题提出:
某校要举办足球赛,若有5支球队进行单循环比赛(即全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场),则该校一共要安排多少场比赛?
构建模型:
生活中的许多实际问题,往往需要构建相应的数学模型,利用模型的思想来解决问题.
为解决上述问题,我们构建如下数学模型:
(1)如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),其中每个点各代表一支足球队,两支球队之间比赛一场就用一条线段把他们连接起来.由于每支球队都要与其他各队比赛一场,即每个点与另外4个点都可连成一条线段,这样一共连成5×4条线段,而每两个点之间的线段都重复计算了一次,实际只有 条线段,所以该校一共要安排 场比赛.

(2)若学校有6支足球队进行单循环比赛,借助图②,我们可知该校一共要安排__________场比赛;
…………
(3)根据以上规律,若学校有n支足球队进行单循环比赛,则该校一共要安排___________场比赛.
实际应用:
(4)9月1日开学时,老师为了让全班新同学互相认识,请班上42位新同学每两个人都相互握一次手,全班同学总共握手________________次.
拓展提高:
(5)往返于青岛和济南的同一辆高速列车,中途经青岛北站、潍坊、青州、淄博4个车站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为__________种.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=
在第一象限内的图象与△ABC有交点,则k的取值范围是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为 km,
;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连结AF、BD.
(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;
(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=BC=2,∠A=∠B=30°,点D在线段AB上运动(点D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E.

(1)AB=;
(2)当AD等于多少时,△ADC≌△BED,请说明理由;
(3)在点D的运动过程中,△CDE的形状可以是等腰三角形吗?若可以,求出AD的长;若不可以,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为4,则线段CF的最小值是_____.

相关试题