【题目】如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H;下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正确的结论有___________.
![]()
参考答案:
【答案】①②③④
【解析】①∵BD⊥FD,
∴∠FGD+∠F=90°,
∵FH⊥BE,
∴∠BGH+∠DBE=90°,
∵∠FGD=∠BGH,
∴∠DBE=∠F,
①正确;
②∵BE平分∠ABC,
∴∠ABE=∠CBE,
∠BEF=∠CBE+∠C,
∴2∠BEF=∠ABC+2∠C,
∠BAF=∠ABC+∠C,
∴2∠BEF=∠BAF+∠C,
②正确;
③∠ABD=90°-∠BAC,
∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC,
∵∠CBE=90°-∠C,
∴∠DBE=∠BAC-∠C,
由①得,∠DBE=∠F,
∴∠F=∠BAC-∠C,
③正确;
④∵∠AEB=∠EBC+∠C,
∵∠ABE=∠CBE,
∴∠AEB=∠ABE+∠C,
∵BD⊥FC,FH⊥BE,
∴∠BGH=∠ABE,
∴∠BGH=∠ABE+∠C,
④正确,
故答案为:①②③④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:a2b-(3ab2﹣a2b)+2(2ab2﹣a2b),其中a=-1,b=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90,则∠BCE 度;
(2)设∠BAC=,∠BCE=.
①如图2,当点D在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论,不必说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某校要用20m的篱笆,一面靠墙(墙长10m),围成一个矩形花圃,设矩形花圃垂直于墙的一边长为xm,花圃的面积为ym2.

(1)求出y与x的函数关系式.
(2)当矩形花圃的面积为48m2时,求x的值.
(3)当边长x为多少时,矩形的面积最大,最大面积是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】比较tan46°,cos29°,sin59°的大小关系是( )
A.tan46°<cos29°<sin59°
B.tan46°<sin59°<cos29°
C.sin59°<tan46°<cos29°
D.sin59°<cos29°<tan46° -
科目: 来源: 题型:
查看答案和解析>>【题目】下列调查中,适合普查的是( ).
A. 中学生最喜欢的电视节目
B. 某张试卷上的印刷错误
C. 质检部门对各厂家生产的电池使用寿命的调查
D. 中学生上网情况
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的个数是( )
(1)连接两点之间的线段叫两点间的距离;
(2)两点之间,线段最短;
(3)若AB=2CB,则点C是AB的中点;
(4)角的大小与角的两边的长短无关.
A. 1个 B. 2个 C. 3个 D. 4个
相关试题