【题目】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE.
(1)求证:AC2=AEAB;
(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.
![]()
参考答案:
【答案】(1)证明见解析;(2)PB=PE;(3)
.
【解析】
试题分析:(1)证明△AEC∽△ACB,列比例式可得结论;
(2)如图2,证明∠PEB=∠COB=∠PBN,根据等角对等边可得:PB=PE;
(3)如图3,先确定线段PQ的最小值时Q的位置:因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,先求AE的长,从而得PB的长,最后利用勾股定理求OP的长,与半径的差就是PQ的最小值.
试题解析:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴
,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴
,∴AC2=AEAB;
(2)PB=PE,理由是:
如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE;
(3)如图3,∵N为OC的中点,∴ON=
OC=
OB,Rt△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,∴Q为OP与⊙O的交点时,PQ最小,∠A=
∠COB=30°,∴∠PEB=2∠A=60°,∠ABP=90°﹣30°=60°,∴△PBE是等边三角形,Rt△OBN中,BN=
=
,∴AB=2BN=
,设AE=x,则CE=x,EN=
﹣x,Rt△CNE中,
,x=
,∴BE=PB=
=
,Rt△OPB中,OP=
=
=
,∴PQ=
﹣4=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图, AD=CD=CB=AB=a,DA∥CB,AB⊥CB,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.

(1)求AC的长;
(2)求证:AB=
AG. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种? -
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF.
同学们作了一步又一步的研究:
(1)、经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)、小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(3)、小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】我市正在修建的轻轨17号线全长为41000米,把数41000用科学记数法表示为
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是( )
A.﹣3
B.3
C.0
D.0或3 -
科目: 来源: 题型:
查看答案和解析>>【题目】计算下列各题:
(1)12﹣(﹣18)+(﹣7)﹣15;
(2)﹣22+3÷(﹣1)2017﹣|﹣4|×5.
相关试题