【题目】在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=80°,那么∠EBC等于( )
A. 15° B. 25° C. 15°或75° D. 25°或85°
参考答案:
【答案】C
【解析】
分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.
如图1.
∵DE 垂直平分AB,∴AE=BE,∴∠BAC=∠ABE.
∵∠AEB=80°,∴∠BAC=∠ABE=50°.
∵AB=AC,∴∠ABC
65°,∴∠EBC=∠ABC﹣∠ABE=15°.
如图2.
∵DE 垂直平分AB,∴AE=BE,∴∠BAE=∠ABE.
∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°.
∵AB=AC,∴∠ABC
25°,∴∠EBC=∠EBA+∠ABC=75°.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-
)2 016×161 008;【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】试题分析:(1)原式利用单项式乘以多项式法则计算即可得到结果;
(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;
(3)先根据幂的乘方的逆运算,把(-
)2 016化为(
)1008,再根据积的乘方的逆运算计算即可.试题解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=(
)1008×161 008=(
×16)1 008=1.【题型】解答题
【结束】
19【题目】如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.

(1)画出△ABC关于直线BM对称的△A1B1C1;
(2)写出AA1的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算. -
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )

A. 6 B. 8 C. 9 D. 10
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;
(2)当点P在线段AB上且不与点Q重合时,如图2,(1)的结论是否成立?并证明;
(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)的结论是否成立?请画出图形并给予证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如下图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=
a°,则下列结论: ①∠BOE=
(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有( )个.
A. 1 B. 2 C. 3 D. 4
相关试题