【题目】如图,已知抛物线y=
x2﹣
(b+1)x+
(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为 , 点C的坐标为(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.![]()
参考答案:
【答案】
(1)(b,0);(0,
)
(2)
解:存在,
假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.
设点P的坐标为(x,y),连接OP.
则S四边形PCOB=S△PCO+S△POB=
x+
by=2b,
∴x+4y=16.
过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四边形PEOD是矩形.
∴∠EPD=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由
解得 ![]()
由△PEC≌△PDB得EC=DB,即
﹣
=b﹣
,
解得b=
>2符合题意.
∴P的坐标为(
,
)
(3)
解:假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
∴只能∠AOQ=∠AQB.此时∠OQB=90°,
由QA⊥x轴知QA∥y轴.
∴∠COQ=∠OQA.
∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.
(I)当∠OCQ=90°时,△CQO≌△QOA.
∴AQ=CO=
.
由AQ2=OAAB得:(
)2=b﹣1.
解得:b=8±4
.
∵b>2,
∴b=8+4
.
∴点Q的坐标是(1,2+
).
(II)当∠OQC=90°时,△OCQ∽△QOA,
∴
,即OQ2=OCAQ.
又OQ2=OAOB,
∴OCAQ=OAOB.即
AQ=1×b.
解得:AQ=4,此时b=17>2符合题意,
∴点Q的坐标是(1,4).
∴综上可知,存在点Q(1,2+
)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
![]()
![]()
【解析】解:(1)令y=0,即y=
x2﹣
(b+1)x+
=0,
解得:x=1或b,
∵b是实数且b>2,点A位于点B的左侧,
∴点B的坐标为(b,0),
令x=0,
解得:y=
,
∴点C的坐标为(0,
),
故答案为:(b,0),(0,
);
(1)令y=0,即y=
x2﹣
(b+1)x+
=0,解关于x的一元二次方程即可求出A,B横坐标,令x=0,求出y的值即C的纵坐标;(2)存在,先假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP,过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,利用已知条件证明△PEC≌△PDB,进而求出x和y的值,从而求出P的坐标;(3)存在,假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似,有条件可知:要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴;要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°;再分别讨论求出满足题意Q的坐标即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).

(1)当x=
时,求弦PA、PB的长度;
(2)当x为何值时,PDCD的值最大?最大值是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.

(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1 , △CDG的面积为S2 . 试说明S1﹣S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】直线l1∥l2∥l3 , 且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)4×(﹣
)﹣
+3﹣2;
(2)a(a﹣3)﹣(a﹣1)2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】据悉,2013年财政部核定海南省发行的60亿地方政府“债券资金”,全部用于交通等重大项目建设.以下是60亿“债券资金”分配统计图:

(1)请将条形统计图补充完整;
(2)在扇形统计图中,a= , b=(都精确到0.1);
(3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为°(精确到1°)
相关试题