【题目】把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的( )
![]()
A.内部 B.外部 C.边上 D.以上都有可能
参考答案:
【答案】C
【解析】
试题分析:先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5
,与AB的值相等,所以点A在△D′E′B的边上. ∵AC=BD=10, 又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°, ∴BE=5,AB=BC=5
,
由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°, ∴△GE′B是等腰直角三角形,且BE′=BE=5, ∴BG=5
,
∴BG=AB, ∴点A在△D′E′B的边上,
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

A. a2﹣b2=(a﹣b)2 B. (a+b)2=a2+2ab+b2
C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣b2=(a+b)(a﹣b)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.
(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;
(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用3根火柴棒搭成1个三角形,接着用火柴棒按如图所示的方式搭成2个三角形,再用火柴棒搭成3个三角形、4个三角形…

(1)若这样的三角形有6个时,则需要火柴棒 根.
(2)若这样的三角形有n个时,则需要火柴棒 根.
(3)若用了2017根火柴棒,则可组成这样图案的三角形有 个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的是( )
A.过一点有两条直线与这条直线垂直
B.两点之间线段最短
C.如果一条射线把一个角分成两个角,那么这条射线叫角的平分线
D.过直线外一点可以有两条直线与这条直线平行
相关试题