【题目】如图①,AB是⊙O的一条弦,点C是优弧
上一点.
(1)若∠ACB=45°,点P是⊙O上一点(不与A、B重合),则∠APB= ;
(2)如图②,若点P是弦AB与
所围成的弓形区域(不含弦AB与
)内一点.求证:∠APB>∠ACB;
(3)请在图③中直接用阴影部分表示出在弦AB与
所围成的弓形区域内满足∠ACB<∠APB<2∠ACB的点P所在的范围.
![]()
参考答案:
【答案】(1)45°或135°;(2)∠APB>∠ACB;(3)图见解析
【解析】
试题分析:(1)根据题意可知,存在两种情况,针对两种情况,可以画出相应的图形,由题目中的信息和同弧所对的圆周角相等,圆内接四边形对角互补,可以分别求得两种情况下∠APB的度数,本题得以解决;
(2)根据题意画出相应的图形,根据三角形的外角大于任何一个和它不相邻的内角,可以证明结论成立,本题得以解决;
(3)根据题意和第(2)问,可以画出满足∠ACB<∠APB<2∠ACB的点P所在的范围,本题得以解决.
试题解析:(1)解:如图①所示,
![]()
根据题意可分两种情况,
第一种情况,当点P在P1时,
可知,∠AP1B=∠ACB=45°;
第二种情况,当点P在P2时,
∵四边形ACBP2是圆内接四边形,
∴∠AP2B+∠ACB=180°,
∵∠ACB=45°,
∴∠AP2B=135°,
故答案为:45°或135°;
(2)证明:如下图②所示,延长AP交⊙O于点Q,连接BQ.
则∠PQB=∠ACB,
∵∠APB为△PQB的一个外角,
∴∠APB>∠PQB,
即∠APB>∠ACB;
![]()
(3)点P所在的范围如下图③所示,
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个等腰三角形的两边长是方程x2-6x+8=0的两个根,那么这个等腰三角形的周长是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A是数轴上表示-30的点,B是数轴上表示10的点,C是数轴上表示18的点,点A,B,C在数轴上同时向数轴的正方向运动,点A运动的速度是6个单位长度每秒,点B和C运动的速度是3个单位长度每秒.设三个点运动的时间为t秒(t≠5),设线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,当2PM-PN=2时,t的值为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题提出】已知∠AOB=70°,∠AOD=
∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.
(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC的度数,解答过程如下:
设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=
∠AOC,∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°
问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC的度数;
【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.
【问题解决】综上所述:∠BOC的度数分别是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,线段AB=10,C是AB的中点.
(1)求线段BC的长;
(2)若点D在直线AB上,DB=2.5,求线段CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用配方法解方程x2﹣8x+7=0,配方后可得( )
A. (x﹣4)2=9B. (x﹣4)2=23
C. (x﹣4)2=16D. (x+4)2=9
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:-24x6y3÷=-4x2y2
相关试题