【题目】如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
![]()
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
![]()
(2)当∠1=70°,求∠EPB的度数;
![]()
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
参考答案:
【答案】(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.
【解析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;
解:(1)∵BD平分∠ABC,
∴∠ABD=∠DBC=
∠ABC=50°,
∵∠EPB是△PFB的外角,
∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;
(2)①当交点P在直线b的下方时:
![]()
∠EPB=∠1﹣50°=20°;
②当交点P在直线a,b之间时:
![]()
∠EPB=50°+(180°﹣∠1)=160°;
③当交点P在直线a的上方时:
![]()
∠EPB=∠1﹣50°=20°;
(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;
②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,∠1+∠2=180°,∠3=∠4.

求证:EF∥GH
证明:∵∠1+∠2=180°(已知),
∠AEG=∠1(对顶角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( )
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ (等式性质),
∴EF∥GH.
-
科目: 来源: 题型:
查看答案和解析>>【题目】发现与探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
……
由此我们可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)= ;请你利用上面的结论,完成下面两题的计算:
(1)32019+32018+32017+……+3+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元;那么随着团体人数的变化,哪家旅行社的收费更优惠?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A',点B、C的对应点分别是点B'、C'.

(1)△ABC的面积是 ;
(2)画出平移后的△A'B'C';
(3)若连接AA'、CC′,这两条线段的关系是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.

相关试题