【题目】如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=6, AB=CD=10.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为( )
![]()
A.2或8B.
或18C.
或2D.2或18
参考答案:
【答案】D
【解析】
分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.
解:如图1,
![]()
∵折叠,
∴△AD′E≌△ADE,
∴∠AD′E=∠D=90°,
∵∠AD′B=90°,
∴B、D′、E三点共线,
又∵ABD′∽△BEC,AD′=BC,
∴ABD′≌△BEC,
∴BE=AB=10,
∵
,
∴
;
如图2,
![]()
∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,
∴∠CBE=∠BAD″,
在△ABD″和△BEC中,
,
∴△ABD″≌△BEC,
∴BE=AB=10,
∴DE=D″E=10+8=18.
综上所知,DE=2或18.
故答案为A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.
(1)如图1,求证:∠DAC=∠PAC;
(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,
,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=
DG,PO=5,求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )

A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABD和△BCD都是等边三角形纸片,AB=2,将△ABD纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.
(1)求证:△FBE是直角三角形;
(2)求BF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,MN=2,设AM=x,在下列关于△PMN是等腰三角形和对应P点个数的说法中,
①当x=0(即M、A两点重合)时,P点有6个;
②当P点有8个时,x=2
﹣2;③当△PMN是等边三角形时,P点有4个;
④当0<x<4
﹣2时,P点最多有9个.其中结论正确的是( )

A. ①② B. ①③ C. ②③ D. ③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是( )

A. 四边形ACDF是平行四边形 B. 当点E为BC中点时,四边形ACDF是矩形
C. 当点B与点E重合时,四边形ACDF是菱形 D. 四边形ACDF不可能是正方形
相关试题