【题目】如图,在△ABC 中,∠C=90°,A=34°,D,E 分别为 AB,AC 上一点,将△BCD,ADE 沿 CD,DE 翻折 A,B 恰好重合于点 P 则∠ACP=_______________


参考答案:

【答案】22°

【解析】

根据折叠的性质即可得到 AD=PD=BD,根据 D AB 的中点可得CD= AB=AD=BD,根据∠ACD=A=34°,BCD=B=56°,即可得出∠BCP=2BCD= 112°,即可得出∠ACP=112°﹣90°=22°.

由折叠可得,AD=PD=BD,

D AB 的中点

CD=AB=AD=BD,

∴∠ACD=A=34°,BCD=B=56°,

∴∠BCP=2BCD=112°,

∴∠ACP=112°﹣90°=22°.

故答案为:22°.

关闭