【题目】如图,在△ABC 中,∠C=90°,∠A=34°,D,E 分别为 AB,AC 上一点,将△BCD,△ADE 沿 CD,DE 翻折,点 A,B 恰好重合于点 P 处,则∠ACP=_______________.
![]()
参考答案:
【答案】22°
【解析】
根据折叠的性质即可得到 AD=PD=BD,根据 D 是 AB 的中点,可得CD=
AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD= 112°,即可得出∠ACP=112°﹣90°=22°.
由折叠可得,AD=PD=BD,
∴D 是 AB 的中点,
∴CD=
AB=AD=BD,
∴∠ACD=∠A=34°,∠BCD=∠B=56°,
∴∠BCP=2∠BCD=112°,
∴∠ACP=112°﹣90°=22°.
故答案为:22°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2
(1)在直线l上任取两点A,B;
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是_________________________________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=30°,∠B=60°,AB⊥AC。
(1)计算:∠DAB+∠B
(2)AB与CD平行吗?AD与BC平行吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源监测点为( )

A.A点
B.B点
C.C点
D.D点 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形网格中每个小正方形边长都是1.
(1)画出△ABC关于直线1对称的图形△A1BlCl;
(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)
(3)连接PA、PC,计算四边形PABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,AABC的三个顶点坐标为A(一3,4),B(一4,2),C(一2,1),ΔABC绕原点顺时针旋转90°,得到△A1B1C1,ΔA1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.
(1)画出ΔA1B1Cl和△A2B2C2
(2)P(a,b)是AABC的AC边上一点,ΔABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形 ABCD 中,AB=8,AD=10,点 E 为 BC 上一点,将△ABE 沿 AE 折叠,使点 B 落在长方形内点 F 处, 且 DF=6,求 BE 的长.

相关试题