【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣
x+3交于C、D两点.连接BD、AD. ![]()
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD , 求点P的坐标.
参考答案:
【答案】
(1)解:∵抛物线y=﹣x2+mx+3过(3,0),
∴0=﹣9+3m+3,
∴m=2
(2)解:由
,得
,
,
∴D(
,﹣
),
∵S△ABP=4S△ABD,
∴
AB×|yP|=4×
AB×
,
∴|yP|=9,yP=±9,
当y=9时,﹣x2+2x+3=9,无实数解,
当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+
,x2=1﹣
,
∴P(1+
,﹣9)或P(1﹣
,﹣9).
【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可;
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=12,AC=
,∠B=30°,则△ABC的面积是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:

(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出B1的坐标.
(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1 , 并求出点A1走过的路径长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校在艺术节选拔节目过程中,从备选的“街舞”、“爵士”、“民族”、“拉丁”四种类型舞蹈中,选择一种学生最喜爱的舞蹈,为此,随机调查了本校的部分学生,并将调查结果绘制成如下统计图表(每位学生只选择一种类型),根据统计图表的信息,解答下列问题:
类型
民族
拉丁
爵士
街舞
据点百分比
a
30%
b
15%

(1)本次抽样调查的学生人数及a、b的值.
(2)将条形统计图补充完整.
(3)若该校共有1500名学生,试估计全校喜欢“拉丁舞蹈”的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:

(1)小亮在家停留了分钟.
(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.
(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=分钟. -
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD. 旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)
若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.

相关试题