【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
参考答案:
【答案】(1)每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①y=﹣50x+15000;②购进34台A型电脑和66台B型电脑的销售利润最大;(3)购进70台A型电脑和30台B型电脑的销售利润最大.
【解析】试题分析:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得
,解得
,答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;
②据题意得,100﹣x≤2x,解得x≥33
,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33
≤x≤70.
①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33
≤x≤70的整数时,均获得最大利润;
③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程3x+1=7的根是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中,是命题的为( )
A.在线段AB上任取一点CB.对顶角相等
C.过点O作直线a∥bD.锐角都相等吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一条直线上有A,B,C三点,AB=6cm,BC=2cm,点P,Q分别是线段AB,BC的中点,则PQ= ______ cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN ②AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是 ( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简下列各式,并解答问题:
①-(-2);
②+(-
);③-[-(-4)];
④-[-(+3.5)];
⑤-{-[-(-5)]};
⑥-{-[-(+5)]}.
问:(1)当+5前面有2 018个负号时,化简后结果是多少?
(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A、B两个旅游点从2011年至2015年“清明小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2011年到2015年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人. A旅游点决定提高门票价格来控制游客数量. 已知游客数量y(万人)与门票价格x(元)之间满足函数关系
. 若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?
相关试题