【题目】如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则四边形ADCE的面积为( )
![]()
A.12B.
C.
D.![]()
参考答案:
【答案】C
【解析】
此题连接DE,先利用旋转和等边三角形的性质证明△ADE是等边三角形,根据题意,由△ADE是等边三角形依据勾股定理判定△CDE是直角三角形即可求四边形的面积.
如图:
![]()
连接DE,过点A作AN 垂直DE于点E,
根据题意由旋转知AD=AE,∠BAD=∠CAE,
又∵等边△ABC中,∠BAC=60°,
∴∠BAD+∠CAD=∠CAE+∠CAD,
即∠BAC=∠DAE=60°,
∴△ADE是等边三角形,
∴DE=AD=4,
又BD=3,CD=5,
∴
,
∴△CDE是直角三角形,
∵AD=4,∠ADE=60°,
∴∠DAN=30°,
∴DN=2,
由勾股定理得AN=
,
∵
=
,
,
,
∴
,
即四边形ADCE的面积是
,
故答案为:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )

A.
B.
C. 1 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】五一期间,小明随父母到某旅游胜地参观游览,他在游客中心O处测得景点A在其北偏东72°方向,测得景点B在其南偏东40°方向.小明从游客中心走了2千米到达景点A,已知景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1千米)
(参考数据:sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.
使用手机的目的 每周使用手机的时间
(0~1表示大于0同时小于等于1,以此类推)
请你根据以上信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的百分比为_______,圆心角度数是度_______;
(2)补全条形统计图:
(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=
的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为 偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.

相关试题