【题目】如图,点E在线段CD上,EA、EB分别平分∠DAB和∠CBA,点F在线段AB上运动,AD=4cm,BC=3cm,且AD∥BC.
(1)你认为AE和BE有什么位置关系?并验证你的结论;
(2)当点F运动到离点A多少厘米时,△ADE和△AFE全等?为什么?
(3)在(2)的情况下,此时BF=BC吗?证明你的结论并求出AB的长.
![]()
参考答案:
【答案】(1)AE⊥BE;(2)当点F运动到离点A为4cm(即AF=AD=4cm)时,△ADE≌△AFE;(3)BF=BC;AB=7cm
【解析】试题分析:(1)、首先根据角平分线的性质得出∠EAB+∠EBA=
(∠DAB+∠ABC),根据平行线的性质可以得出∠EAB+∠EBA=90°,从而得出答案;(2)、要使得△ADE和△AFE全等,则必须满足AF=AD,则AF=AD=4cm;(3)、首先根据△AFE和△ADE全等得出∠D=∠AFE,然后根据平行线的性质以及平角的性质得出∠C=∠BFE,然后结合角平分线和公共边得出三角形全等,然后得出BF=BC=3cm,从而求出AB的长度.
试题解析:(1)、AE⊥BE; ∵EA、EB分别平分∠DAB和∠CBA,∴∠2=
∠DAB,∠3=
∠ABC,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠2+∠3=90°,∴∠AEB=90°,∴AE⊥BE;
(2)、当点F运动到离点A为4cm(即AF=AD=4cm)时,△ADE≌△AFE;
∵EA、EB分别平分∠DAB和∠CBA,∴∠1=∠2,∠3=∠4,在△AFE与△ADE中有∠1=∠2,AE=AE,AF=AD,∴△AFE≌△ADE;
(3)、BF=BC;∵△AFE≌△ADE,∴∠D=∠5,∵AD∥BC,∴∠D+∠C=180°,∵∠5+∠6=180°,∴∠C=∠6,
在△ECB与△EFB中有∠3=∠4 ∠C=∠6 BE=BE`
∴△ECB≌△EFB,∴BF=BC. ∵AF=AD=4cm,BF=BC=3cm,
∴AB=AF+BF=3+4=7(cm).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如图.
比赛项目
票价(元/张)
男 篮
1000
足 球
800
乒乓球
x
依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;
(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;
(3)若购买乒乓球门票的总款数占全部门票总款数的
,试求每张乒乓球门票的价格.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=
,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).
(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,∠A=38°,∠ABC=70°,CD⊥AB于点D,CE平分∠ACB,DF⊥CE于点F,求∠CDF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一元二次方程x2﹣2x﹣3=0配方后所得的方程是( )
A. (x﹣2)2=4 B. (x﹣1)2=4 C. (x﹣1)2=3 D. (x﹣2)2=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为( )
A. 2.01×10-6千克 B. 0.201×10-5千克 C. 20.1×10-7千克 D. 2.01×10-7千克
相关试题