【题目】如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.
![]()
(1)求证:AF⊥DE;
(2)求证:CG=CD.
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题(1)正方形ABCD中,AB=BC,BF=AE,且∠ABF=∠DAE=90°,即可证明△ABF≌△DAE,即可得∠DGA=90°,结论成立.
(2)延长AF交DC延长线于M,证明△ABF≌△MCF,说明△DGM是直角三角形,命题得证.
试题解析:(1)∵四边形ABCD为正方形
∴AB=BC=CD=AD,∠ABF=∠DAE=90°,
又∵E,F分别是边AB.BC的中点
∴AE=
AB.BF=
BC
∴AE=BF.
在△ABF与△DAE中,
,
∴△DAE≌△ABF(SAS).
∴∠ADE=∠BAF,
∵∠BAF+∠DAG=90°,
∴∠ADG+∠DAG=90°,
∴∠DGA=90°,即AF⊥DE.
(2)证明:延长AF交DC延长线于M,
![]()
∵F为BC中点,
∴CF=FB
又∵DM∥AB,
∴∠M=∠FAB.
在△ABF与△MCF中,
![]()
∴△ABF≌△MCF(AAS),
∴AB=CM.
∴AB=CD=CM,
∵△DGM是直角三角形,
∴GC=
DM=DC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一组数据a1,a2,a3的平均数为4,方差为3,那么数据a1+2,a2+2,a3+2的平均数和方差分别是( )
A. 4,3B. 6,3C. 3,4D. 6,5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知点A、B是反比例函数y=﹣
上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__.
【答案】

【解析】过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,如图所示.

∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
又∵AD⊥y轴,BE⊥y轴,
∴∠ACD+∠CAD=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,∠BCE=∠CAD.
在△ACD和△CBE中,由
,∴△ACD≌△CBE(ASA).
设点B的坐标为(m,﹣
)(m<0),则E(0,﹣
),点D(0,3﹣m),点A(﹣
﹣3,3﹣m),∵点A(﹣
﹣3,3﹣m)在反比例函数y=﹣
上,
,解得:m=﹣3,m=2(舍去).∴点A的坐标为(﹣1,6),点B的坐标为(﹣3,2),点F的坐标为(﹣1,2),
∴BF=2,AF=4,
故答案为:2
.【点睛】
过点A作AD⊥y轴于点D,过点B作BE⊥y轴于点E,过点A作AF⊥BE轴于点F,根据角的计算得出“∠ACD=∠CBE,∠BCE=∠CAD”,由此证出△ACD≌△CBE;再设点B的坐标为(m,﹣
),由三角形全等找出点A的坐标,将点A的坐标代入到反比例函数解析式中求出m的值,将m的值代入A,B点坐标即可得出点A,B的坐标,并结合点A,B的坐标求出点F的坐标,利用勾股定理即可得出结论.【题型】填空题
【结束】
18【题目】二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l1:y=
x-3与x轴,y轴分别交于点A和点B.(1)求点A和点B的坐标;
(2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;
(3)设直线l2与x轴的交点为M,则△MAB的面积是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.
(1)参加这次夏令营活动的初中生共有______人.
(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元,平均每人捐款多少元?
(3)在(2)的条件下,把每个学生的捐款数(以元为单位)一一记录下来,则在这组数据中,众数和中位数分别是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
(a ≠ 0)满足条件:(1)
;(2)
;(3)与x轴有两个交点,且两交点间的距离小于2.以下有四个结论:①
;②
;③
;④
,其中所有正确结论的序号是 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.

相关试题