【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 .
![]()
参考答案:
【答案】(21008,0).
【解析】
试题分析:∵正方形OA1B1C1边长为1,∴OB1=
,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=
,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)
B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的
倍,∵2016÷8=252,∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,∠A=60°,AB=4
,点P在对角线AC上,且PB=PD=4,则∠PDC的度数为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】数学思考:

(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠PAB、∠PCD的关系,并证明你的结论
(2)①如图2,已知AA1∥BA1 , 请你猜想∠A1 , ∠B1 , ∠B2 , ∠A2、∠A3的关系,并证明你的猜想;
②如图3,已知AA1∥BAn , 直接写出∠A1 , ∠B1 , ∠B2 , ∠A2、…∠Bn﹣1、∠An的关系
(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为
A.180°+α+β﹣γ B.180°﹣α﹣γ+β C.β+γ﹣α D.α+β+γ
②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.

(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知4×22×84=2x , 则x=。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是 .

相关试题