【题目】如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.
![]()
(1)求证:CG是⊙O的切线;
(2)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.
参考答案:
【答案】见解析
【解析】
试题分析:(1)连接OC.欲证CG是⊙O的切线,只需证明∠CGO=90°,即CG⊥OC;
(2)根据直角三角形ABC、直角三角形DCF的面积公式,以及直角三角形斜边的中线等于斜边的一半求得AC=2AF;然后根据三角形中位线的判定与定理证得该结论.
证明:(1)如图,连接OC.
在△ABC中,∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角);
又∵OA=OC,
∴∠A=∠ACO(等边对等角);
在Rt△DCF中,∵点G为DF的中点,∴CG=GF(直角三角形斜边上的中线是斜边的一半),
∴∠GCF=∠CFG(等边对等角);
∵DE⊥AB(已知),∠CFG=∠AFE(对顶角相等);
∴在Rt△AEF中,∠A+∠AFE=90°;
∴∠ACO+∠GCF=90°,即∠GCO=90°,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角),即AC⊥BD;
又∵CD=BC,点G为DF的中点,
∴S△AFB=S△ABC﹣S△BCF=
(ACBC﹣CFBC),S△DCG=
S△FCD=
×
DCCF=
BCCF;
∵△AFB的面积是△DCG的面积的2倍,
∴
(ACBC﹣CFBC)=2×
BCCF,
∴AC=2CF,即点F是AC的中点;
∵O点是AB的中点,
∴OF是△ABC的中位线,
∴OF∥BC.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(-a)3·(a2)3·(-a)2的结果正确的是( )
A. -a11 B. a11 C. -a10 D. a13
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为 度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB.点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.

(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的长度;
(2)求证:AE=AF+BC;
(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是 .
(2)作出△ABC关于x轴对称的图形△A1B1C1,画△A1B1C1,并直接写出点A1的坐标.
(3)若以D、B、C为顶点的三角形与△ABC全等,请画出所有符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一副三角板的两个直角顶点重合在一起.

(1)若∠EON=140°,求∠MOF的度数;
(2)比较∠EOM与∠FON的大小,并写出理由;
(3)求∠EON+∠MOF的度数.
相关试题