【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为_____.
![]()
参考答案:
【答案】
【解析】
如图,延长BG交CH于点E,
∵AG=CH=8,BG=DH=6,AB=CD=10,
∴AG2+BG2=AB2,CH2+DH2=DC2,△ABG≌△CDH,
∴∠AGB=∠CHD=90°,∠1=∠5,∠2=∠6,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3,∠2=∠4,
又∵AB=BC,
∴△ABG≌△BCE,
∴BE=AG=8,CE=BG=6,
∴GE=BE-BG=8-6=2,HE=CH-CE=8-6=2,BE2+CE2=CD2,
∴∠BEC=90°,
∴HG=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,∠5=∠6,∠3=∠4,试说明AE∥BD,AD∥BC.请完成下列证明过程.
证明:
∵∠5=∠6,
∴AB∥CE( ),
∴∠3=__________
∵∠3=∠4,
∴∠4=∠BDC( ),
∴ ∥BD( ),
∴∠2= ( )
∵∠1=∠2,
∴∠1=______,
∴AD∥BC

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)求证:AE∥CF.
(2)BC平分∠DBE吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的是( ).
A. “打开电视机,正在播放《动物世界》”是必然事件
B. 某种彩票的中奖概率为
,说明每买1000张,一定有一张中奖C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为

D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查
-
科目: 来源: 题型:
查看答案和解析>>【题目】请在右边的平面直角坐标系中描出以下三点:
、
、
并回答如下问题:
在平面直角坐标系中画出△ABC;
在平面直角坐标系中画出△A′B′C′;使它与
关于x轴对称,并写出点C′的坐标______;
判断△ABC的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AE、CF分别被直线EF、AC所截,已知,
,AB平分
,CD平分
.将下列证明
的过程及理由填写完整.
证明:
,
______
______ ,
______ 
,
______ 
平分
,CD平分
,
______
,
______
,
______
______ ,
______
. -
科目: 来源: 题型:
查看答案和解析>>【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次
第二次
第三次
第四次
第五次
第六次
平均成绩
中位数
甲
10
8
9
8
10
9
9
①
乙
10
7
10
10
9
8
②
9.5
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为
,你认为推荐谁参加比赛更合适,请说明理由.
相关试题