【题目】下列图形中,是轴对称图形但不是中心对称图形的是( )
A.平行四边形 B.等腰三角形 C.矩形 D.正方形
参考答案:
【答案】B.
【解析】
试题分析:根据轴对称图形的概念和中心对称图形的概念可得选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.

(1)求证:BE=CE;
(2)若BD=2,BE=3,求AC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM= 度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.
小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).

请回答:
(1)在图2中,小明得到的全等三角形是△ ≌△ ;
(2)BC和AC、AD之间的数量关系是 .
参考小明思考问题的方法,解决问题:
如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一条公路的转弯处是一段圆弧(
).(1)用直尺和圆规作出
所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若
的中点C到弦AB的距离为20m,AB=80m,求
所在圆的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△CDE中,已知AC=CD,AC⊥CD,∠B=∠E=90°,则下列结论不正确的是( )

A.∠A与∠D互为余角
B.∠A=∠2
C.△ABC≌△CED
D.∠1=∠2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,点D是BC边上的中点,点E在AD上,那么下列结论不一定正确的是( )

A.AD⊥BC B.∠EBC=∠ECB C.∠ABE=∠ACE D.AE=BE
相关试题