【题目】如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:
≈1.73)
![]()
参考答案:
【答案】没有触礁的危险.
【解析】
试题分析:作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△PAC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.
试题解析:没有触礁的危险.理由如下:
作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,在Rt△PBC中,∵∠PBC=45°,∴△PBC为等腰直角三角形,∴BC=PC=x,在Rt△PAC中,∵tan∠PAC=
,∴AC=
,即8+x=
,解得x=
≈10.92,即AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班举办元旦联欢会,班长对全班同学最爱吃哪几种水果这一问题作出了调查,班长在确定购买哪一种水果时,最值得关注的统计量是( )
A.中位数B.平均数C.众数D.加权平均数
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形的边长为a,若边长增加x,则面积增加( )
A. (a+x)2 -a2 B. (a-x)2+a2 C. (a+x)2+x2 D. (a-x)2 -x2
-
科目: 来源: 题型:
查看答案和解析>>【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点
互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,D是等边三角形△ABC边BA上任意一点(D与A、B不重合),连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,∠ABC与∠EAC有怎样数量关系直接写出结论
(2)如图2,D是等边三角形△ABC边BA延长线上一点,连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,求证:∠ABC=∠EAC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第( )象限.
A. 四 B. 三 C. 二 D. 一
相关试题