【题目】将抛物线y=x2﹣4x+1向左平移2个单位,再向上平移3个单位所得抛物线解析式为 .
参考答案:
【答案】y=x2
【解析】解:∵y=x2﹣4x+1, =x2﹣4x+4﹣4+1,
=(x﹣2)2﹣3,
∴原抛物线顶点坐标为(2,﹣3),
∵向左平移2个单位,再向上平移3个单位,
∴平移后的抛物线顶点坐标为(0,0),
∴所得抛物线解析式为y=x2 .
所以答案是:y=x2 .
【考点精析】本题主要考查了二次函数图象的平移的相关知识点,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解答
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.
证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
-
科目: 来源: 题型:
查看答案和解析>>【题目】枣庄乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)
(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,求h的长;
(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:
≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=
x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
A. (-3,0) B. (-6,0) C. (-
,0) D. (-
,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.a+a=a2
B.6a3﹣5a2=a
C.3a2+2a3=5a5
D.3a2b﹣4ba2=﹣a2b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l是一条河,A,B两地相距5km,A,B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.

相关试题