【题目】如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF.
![]()
参考答案:
【答案】详见解析.
【解析】
根据已知条件证明AB=CD,AF=CF,证明 Rt△ABF≌Rt△CDE(HL),得BF=DE,进而证明△BFG≌△DEG(AAS),即可证明.
证明∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFE=90°,
∵AE=CF,AE+EF=CF+EF,即AF=CE.
在Rt△ABF和Rt△CDE中,AB=CD,AF=CF,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中,∠BFG=∠DEG,∠BGF=∠DGE,BF=DE
∴△BFG≌△DEG(AAS),
∴FG=EG,即BD平分EF
-
科目: 来源: 题型:
查看答案和解析>>【题目】某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队4天能完成绿化的面积等于乙队8天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)若甲队每天化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8
,则另一直角边AE的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=ax+b(a≠0)的图象与反比例函数
的图象交于第二、四象限内的A,B两点,与
轴交于C点,过点A作AH⊥
轴,垂足为H,OH=3,tan∠AOH=
,点B的坐标为(
,﹣2).(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC﹣∠CEF=90°,连接AF,M是AF的中点
(1)如图1,当CB与CE在同一直线上时,连接CM,若CB=1,CE=2,求CM的长.
(2)如图2,连接MB,ME,当∠BCE=45°时,求证:BM=ME.

相关试题