【题目】如图,在四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,求y与x之间的函数表达式.
![]()
参考答案:
【答案】y=![]()
·
x=
x2
【解析】试题分析:过D作DE⊥AC与E点,设BC=a,则AC=4a,根据等角的余角相等得到∠1=∠3,易证得△ABC≌△DAE,所以AE=BC=a,DE=AC=4a,得到EC=AC-AE=4a-a=3a,在Rt△DEC中,根据勾股定理得到DC=5a,所以有x=5a,即a=
;根据四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,即可得到.
试题解析:
过D作DE⊥AC于E点,如图,
设BC=a,则AC=4a,
∵∠BAD=90°,∠AED=90°,
∴∠1=∠3,
而∠ACB=90°,AB=AD,
∴△ABC≌△DAE,
∴AE=BC=a,DE=AC=4a,
∴EC=AC-AE=4a-a=3a,
在Rt△DEC中,DC=5a,
∴x=5a,即a=
,
又∵四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,
∴
,
即y与x之间的函数关系式是y=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中,是中心对称图形的是( )
A. 等腰三角形 B. 直角三角形 C. 正五边形 D. 平行四边形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.

(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由). -
科目: 来源: 题型:
查看答案和解析>>【题目】某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形的正投影不可能是( )
A.线段
B.矩形
C.正方形
D.梯形 -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天? -
科目: 来源: 题型:
查看答案和解析>>【题目】五一节期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮亮妈妈的兑换方法.

相关试题