【题目】如图,已知抛物线y=
+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
![]()
参考答案:
【答案】(1)m=2,(1,4);(2)(1,2).
【解析】试题分析:(1)首先把点B的坐标为(3,0)代入抛物线y=
+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
试题解析:(1)把点B的坐标为(3,0)代入抛物线y=
+mx+3得:0=
+3m+3,
解得:m=2,
∴y=
+2x+3=
,
∴顶点坐标为:(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴
,解得:
,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:求1+2+22+23+24+…+22019的值.
解:设S=1+2+22+23+24+…+22019,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22019+22020
将下式减去上式得2S-S=22020-1
即S=22020-1
即1+2+22+23+24+…=22020-1
请你仿照此法计算:
(1)1+2+22+23+24+…+220
(2)1+5+52+53+54+…+5n(其中n为正整数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:千米)+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“-”“×”“÷”运算,可加括号使其结果等于24.
例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.
现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃、方块上的点数记为负数,黑桃、梅花上的点数记为正数.
请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)
依次记为:______ 、______ 、______ 、______

依次记为:______ 、______ 、______ 、______ .
(1)帮助郑同学列式计算:______
(2)帮助付同学列式计算:______ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,则下列结论中错误的是( )

A. a+c<0B. -a+b+c<0
C. |a+b|>|a+c|D. |a+b|<|a+c|
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;④
不仅是有理数,而且是分数;⑤
是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为( )A. 7个B. 6个C. 5个D. 4个
相关试题