【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD. ![]()
求证:
(1)△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
参考答案:
【答案】
(1)证明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+CAD
即∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
(2)BD、CE特殊位置关系为BD⊥CE.
证明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置关系为BD⊥CE
【解析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
⑴若△ABC关于x轴对称的图形是△A1B1C1,直接写出A1、B1、C1的坐标;
⑵将△ABC绕点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出点A的对称点A2的坐标;
⑶计算△OA1A2的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第一本按标价的80%卖.
(1)小明要买20本时,到哪个商店较省钱?
(2)买多少本时给两个商店付相等的钱?
(3)小明现有40元钱,最多可买多少本?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.

(1)求证:四边形BMNP是平行四边形;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把一副三角尺的直角顶点O重叠在一起.

(1)如图1,若OC平分∠AOB,请猜想此时OB是不是平分∠COD?答:_________(只回答“是”或“不是”即可)
(2)如图21-2,若∠COB=∠1,OB在∠COD的内部,请你猜想∠AOC与∠DOB是否相等,并简述理由;
(3)在(2)的条件下,请问∠COB与∠AOD的和是多少?并简述理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若3x4n﹣7+5=0是一元一次方程,则n=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.

(1)若∠BAE=40°,求∠C的度数;
(2)若△ABC周长13cm,AC=6cm,求DC长.
相关试题