【题目】如图,图中的曲线表示小华星期天骑自行车外出离家的距离与时间的关系,小华八点离开家,十四点回到家,根据这个曲线图,请回答下列问题:
(1)到达离家最远的地方是几点?离家多远?
(2)何时开始第一次休息?休息多长时间?
(3)小华在往返全程中,在什么时间范围内平均速度最快?最快速度是多少?
(4)小华何时离家21千米?(写出计算过程)
![]()
参考答案:
【答案】(1)11点,30千米;(2)17,0.5;(3)返回的途中最快,15千米/小时;(4)第
或
时离家21千米
【解析】试题分析:(1)图中的点的横坐标表示时间,所以点E点距离家最远,横坐标表示距家最远的时间,纵坐标表示离家的距离;
(2)休息是路程不在随时间的增加而增加;
(3)往返全程中回来时候平均速度最快;
(4)求得线段DE所在直线的解析式,令y=21解得x的值就是离家21千米的相应的时间.
试题解析:
(1)到达离家最远的地方是11点,此时距离家30千米;
(2)到距家17千米的地方开始休息,休息了(10-9.5)=0.5小时;
(3)小华在返回的途中最快,平均速度为30÷(14-12)=15千米/小时;
(4)由图象可知点D、E的坐标分别为(10,17),(11,30),F、G的坐标分别为
(12,30),(14,0),
∴设直线DE所在直线的解析式为y=kx+b,直线FG的解析式为y=ax+c,
∴
,
解得:k=13;b=113,
a=15;c=210,
∴解析式为y=13x-113,y=-15x+210,
令y=21,
解得:x=
或
,
∴第
或
时离家21千米。
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A. a3a3=2a3B. (ab2)3=ab6
C. 3a(﹣2a)2=12a3D. (﹣x)4÷(﹣x)2=﹣x2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).
(1)求此一次函数的解析式;
(2)求此一次函数的图象与x轴、y轴的交点坐标;
(3)求此一次函数的图象与两坐标轴所围成的三角形面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=
过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据现有的信息,请求出题中的一次函数的解析式.
(2)根据关系式画出这个函数图象.
(3)过点B能不能画出一直线BC将△ABO(O为坐标原点)分成面积比为1:2的两部分?如能,可以画出几条,并求出其中一条直线所对应的函数关系式,其它的直接写出函数关系式;若不能,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).

(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y1=k1x+b1(k1≠0)经过原点和点(-2,-4),直线y2=k2x+b2(k2≠0)经过点(1,5)和点(8,-2).
(1)求y1、y2的函数关系式;
(2)若两条直线相交于点M,求点M的坐标;
(3)若直线y2与x轴交于点N,试求△MON的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 经过一点有且只有一条直线与已知直线平行
B. 直线外一点到这条直线的垂线段,叫做点到直线的距离
C. 同一平面内,不相交的两条直线是平行线
D. “相等的角是对顶角”是真命题
相关试题