【题目】一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”
对这位专家的陈述下面有四个推断:
①
×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;
②
大于50%,所以未来20年,A城市一定发生地震;
③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;
④不能确定在未来20年,A城市是否会发生地震;
其中合理的是( )
A. ①③ B. ②③ C. ②④ D. ③④
参考答案:
【答案】D
【解析】
根据概率的意义,可知发生地震的概率是三分之二,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.
∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,
∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.

(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.

(1)求证:AE=CF;
(2)连结ED、FB,判断四边形BEDF是否是平行四边形,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数y1=﹣x+4的图象与函数y2=
(x>0)的图象交于A(a,1)、B(1,b)两点. 
(1)求函数y2的表达式;
(2)观察图象,比较当x>0时,y1与y2的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,AC=BC,在△ABC外侧作直线CP,点A关于直线CP的对称点为D,连接AD,BD,其中BD交直线CP于点E.
(1)如图1,∠ACP=15°.
①依题意补全图形;
②求∠CBD的度数;
(2)如图2,若45°<∠ACP<90°,直接用等式表示线段AC,DE,BE之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】学校计划从商店购买同一品牌的钢笔和文具盒,已知购买一个文具盒比购买一个钢笔多用20元,若用400元购买文具盒和用160元购买钢笔,则购买文具盒的个数是购买钢笔个数的一半.
(1)分别求出该品牌文具盒、钢笔的定价;
(2)经商谈,商店给予学校购买一个该品牌文具盒赠送一个该品牌钢笔的优惠,如果学校需要钢笔的个数是文具盒个数的2倍还多8个,且学校购买文具盒和钢笔的总费用不超过670元,那么该学校最多可购买多少个该品牌文具盒?
相关试题