【题目】已知,O为直线AB上一点,∠DOE=90°.
(1)如图1,若∠AOC=130°,OD平分∠AOC.
①求∠BOD的度数;
②请通过计算说明OE是否平分∠BOC.
(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.
![]()
参考答案:
【答案】(1)①115°;②答案见解析;(2)∠AOD=50°
【解析】试题分析:(1)①先求出∠AOD的度数,再根据邻补角求出∠BOD即可;
②分别求出∠COE,∠BOE的度数即可作出判断;
(2)由已知设∠BOE=2x,则∠AOE=7x, 再根据∠BOE+∠AOE=180°,求出∠BOE=40°,再根据互余即可求出∠AOD=90°-40°=50°.
试题解析:(1)①∵OD平分∠AOC,∠AOC=130°,
∴∠AOD=∠DOC=
∠AOC=
×130°=65°,
∴∠BOD=180°-∠AOD=180°-65°=115°;
②∵∠DOE=90°,又∠DOC=65°,
∴∠COE=∠DOE-∠DOC=90°-65°=25°,
∵∠BOD=115°,∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=115°-90°=25°,
∴∠COE=∠BOE,
即OE平分∠BOC;
(2)若∠BOE:∠AOE=2:7,
设∠BOE=2x,则∠AOE=7x,
又∠BOE+∠AOE=180°,∴2x+7x=180°,
∴x=20°,∠BOE=2x=40°,
∵∠DOE=90°,
∴∠AOD=90°-40°=50°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.(﹣a5)2=a10
B.2a3a2=6a2
C.﹣2a+a=﹣3a
D.﹣6a6÷2a2=﹣3a3 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6cm,则d=_____cm;
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中正确的是( ).
A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似
C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.

(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0). ①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式. -
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两地的实际距离为36km,用比例尺为1∶100000画在地图上的距离为__________厘米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是____________.

(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使
,请直接写出相应的BF的长.
相关试题