【题目】如图,矩形ABCD中,AD=4,AB=2.点E是AB的中点,点F是BC边上的任意一点(不与B、C重合),△EBF沿EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为________.
![]()
参考答案:
【答案】![]()
【解析】
根据题意可知当FB'⊥DE时,DB'的长度最小,则根据勾股定理求出DE=
,设BF=x,根据折叠的性质可得B’E=1, B’F=x,则DB'=
-1,FC=4-x,再根据DF是两个直角三角形的斜边,可根据勾股定理列出方程即可求解.
如图,当FB'⊥DE时,DB'的长度最小,
∵点E是AB的中点,
∴AE=BE=
=1
∴DE=![]()
设BF=x,
∵折叠,∴B’E=1, B’F=x,
故DB'=
-1,FC=4-x,
在Rt△DCF和Rt△B’DF中,
DF2=![]()
即![]()
解得x=![]()
即BF=![]()
故填:
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为
.①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.
③过点A作
于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)(3分)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)(3分)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)(4分)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是⊙O的切线;
(2)求证:BC=
AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN
MC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.

(1)这次统计共抽取了 位同学,扇形统计图中的
,
的度数是 ;(2)请将条形统计图补充完整;
(3)估计全校共多少学生参加了球类运动.
-
科目: 来源: 题型:
查看答案和解析>>【题目】吉祥超市准备购进甲、乙两种绿色袋装食品共800袋.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲
乙
进价(元/袋)
m
m﹣2
售价(元/袋)
20
13
(1)求m的值;
(2)假如购进的甲、乙两种绿色袋装食品全部卖出,所获总利润不少于5200元,且不超过5280元,问该超市有几种进货方案?(利润=售价﹣进价)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AC=8,CE=4,求弧BD的长.(结果保留π)

相关试题