【题目】如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).![]()
(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t=s时,四边形PBQE为菱形;
②当t=s时,四边形PBQE为矩形.
参考答案:
【答案】
(1)证明:∵正六边形ABCDEF内接于⊙O,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,
∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,
∴AP=DQ=t,PF=QC=4﹣t,
在△ABP和△DEQ中,
,
∴△ABP≌△DEQ(SAS),
∴BP=EQ,同理可证PE=QB,
∴四边形PEQB是平行四边形
(2)2;0或4
【解析】(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.
②当t=0时,∠EPF=∠PEF=30°,
∴∠BPE=120°﹣30°=90°,
∴此时四边形PBQE是矩形.
当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.
综上所述,t=0s或4s时,四边形PBQE是矩形.
故答案为2s,0s或4s.
(1)根据正六边形的性质得出AB=DE,∠A=∠D,再根据点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,得出AP=DQ,就可证明△ABP≌△DEQ,可得BP=EQ,同理PE=BQ,由此即可证明结论。
(2)①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s;
②当t=0时,∠EPF=∠PEF=30°,得出∠BPE=90°,可证明此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形,即可得出答案。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.
(1)求△AOB的面积;
(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;
(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明
(1)如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代换)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正五边形ABCDE中.

(1)AC与BE相交于P,求证:四边形PEDC为菱形;
(2)延长DC、AE交于M点,连BM交CE于N,求证:CN=EP;
(3)若正五边形边长为2,直接写出AD的长为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变了图形的位置,而图形的形状大小没有变化
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
相关试题