【题目】永辉超市销售茶壶、茶杯,茶壶每只定价20元,茶杯每只4元.今年“双十一”期间超市将开展促销活动,向顾客提供两种优惠方案:
方案一:每买一只茶壶就赠一只茶杯;
方案二:茶壶和茶杯都按定价的90%付款.
某顾客计划到该超市购买茶壶5只和茶杯
只(茶杯数多于5只).
(1)用含
的代数式分别表示方案一与方案二各需付款多少元?
(2)当
时,请通过计算说明该顾客选择上面的两种购买方案哪种更省钱?
(3)当
时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
参考答案:
【答案】(1) (1)方案一需付款(4x+80)元,方案二需付款(3.6x+90)元;(2)方案一省钱;(3)见解析;
【解析】
(1)根据两种优惠方案分别列出代数式即可;
(2)分别代入
进行计算,再比较即可;
(3)将两种方案进行组合购买即可.
解:(1)顾客按方案一购买,则需要付款5×20+4(x5)=(4x+80)元,
顾客按方案二购买,则需要付款5×20×0.9+4×0.9x=(3.6x+90)元;
(2)当x=20元时,
方案一需付款:4x+80=4×20+80=160(元),
方案二需付款:3.6x+90=3.6×20+90=162(元),
160<162,
故选择方案一购买更省钱;
(3)先按方案一购买5把茶壶,赠送5个茶杯,付款100元;再按方案二购买15个茶杯付款15×4×0.9=54(元),共计154元,
此方法比方案一、方案二省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD,OE与AB交于点F.
(1)试判断四边形AEBO的形状,并说明理由;
(2)若OE=10,AC=16,求菱形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是用大小相等的小五角星按一定规律拼成的一组图案,第1个图案中有4颗五角星,第2个图案中有7颗五角星,第3个图案中有10颗五角星,…,请根据你的观察完成下列问题.

(1)根据上述规律,分别写出第4个图案和第5个图案中小五角星的颗数;
(2)按如图所示的规律,求出第
个图案中小五角星的颗数(用含
的代数式表示);(3)求第2019个图案中小五角星的颗数?
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列两个等式:
,
,给出定义如下:我们称使等式
成立的一对有理数
,
为“共生有理数对”,记为(
,
),如:数对(
,
),(
,
),都是“共生有理数对”.(1)数对(
,
),(
,
)中是“共生有理数对”吗?说明理由. (2)若(
,
)是“共生有理数对”,则(
,
)是“共生有理数对”吗?说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .

备用图
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.试题解析:(1)证明:连接OD,

∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为


【题型】解答题
【结束】
25【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为直线
上的一点,
是直角,
平分
. (1)如图1,若
=
°,则
= °,
与
的数量关系为 .(2)当射线
绕点
逆时针旋转到如图2的位置时,(1)中
与
的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若
=
°,在
的内部是否存在一条射线
,使得
?若存在,请求出
的度数;若不存在,请说明理由.
相关试题