【题目】光明中学七年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
项目选择情况统计图训练后篮球定时定点投篮测试进球数统计表
进球数(个) | 8 | 7 | 6 | 5 | 4 | 3 |
人数 | 2 | 1 | 4 | 7 | 8 | 2 |
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比是_____%,该班共有同学_____人;
(2)求训练后篮球定时定点投篮人均进球数;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.
![]()
参考答案:
【答案】(1)10%,40;(2)5;(3)4.
【解析】试题分析:
(1)①由“选择长跑训练的人数占全班人数的百分比”=1-参加其它训练项目的人数所占百分比之和结合扇形统计图中的信息即可求得第一空答案;②由统计表中信息可得“参加篮球训练的总人数”结合扇形统计图中“参加篮球训练的人数占全班总数的60%”即可计算出全班总人数;
(2)由统计表中的信息按“计算加权平均数的方法”即可求出“人均进球数”;
(3)设训练前“人均进球数”为
,结合(2)中的计算结果可列出方程,解方程即可求得训练前的“人均进球数”.
试题解析:
(1)①根据扇形统计图中的信息可知:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%;
②由统计表可知:训练篮球的人数=2+1+4+7+8+2=24人,由扇形统计图可知:参加篮球训练的人数占全班总人数的60%,
∴全班人数=24÷60%=40;
(2)由统计表中的信息可得:人均进球数=
=5;
(3)设训练前“人均进球数”为
个,由题意得:
,
解得:
.
答:参加训练前的人均进球数为4个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A城气象台测得台风中心在A城正西方向600km的B处,以每小时200km的速度向北偏东60°的方向移动,距台风中心500km的范围内是受台风影响的区域.

(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,连接AP,并廷长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线
②∠ADC=60°
③点D在AB的垂直平分线上
④若AD=2dm,则点D到AB的距离是1dm
⑤S△DAC:S△DAB=1:2

A.2B.3C.4D.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=
的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;
(2)若P是y轴上一点,且满足△PAB的面积是5,求OP的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB=
,E是弧AB的中点,求EGED的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:
原料名称 饮料名称
甲
乙
A
20克
40克
B
30克
20克
(1)有几种符合题意的生产方案写出解析过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
相关试题