【题目】已知:AE是△ABC的外角∠CAD的平分线.
(1)若AE∥BC,如图1,试说明∠B=∠C;
(2)若AE交BC的延长线于点E,如图2,直接写出反应∠B、∠ACB、∠AEC之间关系的等式.
![]()
参考答案:
【答案】(1)见解析;(2)∠ACB=∠B+2∠AEC,理由见解析
【解析】
(1)依据AE是△ABC的外角∠CAD的平分线,可得∠DAE=∠CAE,依据AE∥BC,可得∠DAE=∠B,∠CAE=∠C,进而得出∠B=∠C;
(2)依据AE是△ABC的外角∠CAD的平分线,可得∠DAC=2∠DAE,再根据∠DAE是△ABE的外角,∠DAC是△ABC的外角,即可得出结论.
解:(1)∵AE是△ABC的外角∠CAD的平分线,
∴∠DAE=∠CAE,
又∵AE∥BC,
∴∠DAE=∠B,∠CAE=∠C,
∴∠B=∠C;
(2)∠ACB=∠B+2∠AEC.
理由:∵AE是△ABC的外角∠CAD的平分线,
∴∠DAE=∠CAE,
即∠DAC=2∠DAE,
∵∠DAE是△ABE的外角,∠DAC是△ABC的外角,
∴∠DAC=∠B+∠ACB,∠DAE=∠B+∠AEC,
∴∠B+∠ACB=2(∠B+∠AEC),
即∠ACB=∠B+2∠AEC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,反比例函数y1=
的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).
(1)求反比例函数y1=
和一次函数y2=ax+b的表达式;
(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=
CD,求点C的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点A、O、B在同一直线上,∠AOC=60°,在直线AB另一侧,直角三角形DOE绕直角顶点O逆时针旋转(当OD与OC重合时停止),设∠BOE=α:
(1)如图1,当DO的延长线OF平分∠BOC,∠α=______度;
(2)如图2,若(1)中直角三角形DOE继续逆时针旋转,当OD位于∠AOC的内部,且∠AOD=
∠AOC,∠α=__度;(3)在上述直角三角形DOE的旋转过程中,(∠COD+∠α)的度数是否改变?若不改变,请求出其度数;若改变,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O在直线AB上,∠AOC=30°,将一直角三角板的直角边OM与OA重合,ON在∠COB内部.现将三角板绕O沿顺时针方向以每秒2°的速度旋转,当ON与OB重合时停止转动.设运动时间为t(s).
(1)若直角边ON将∠COB分成∠CON:∠BON=3:2,求t的值;
(2)如图2,OG为三角板MON内部的射线,在旋转的过程中,OG始终平分∠MOB,请问∠AOM与∠NOG是否存在一定的数量关系?若存在,求出改数量关系;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠BAC=90°,AC=9,AB=12.按如图所示方式折叠,使点B、C重合,折痕为DE,连接AE.求AE与CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的二次函数y=x2+bx+c经过点(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使
+
+
=
?若存在,请求出n;若不存在,请说明理由.
(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.

(1)当⊙O的半径为1时,
①分别判断在点D(
,
),E(0,﹣
),F(4,0)中,是⊙O的相邻点有;
②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;
③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣
与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.
相关试题