【题目】如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正确结论的个数为( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】D
【解析】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,得出②正确;再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断③正确;再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE=∠BCA,判断④正确.
详解:∵∠BAC=60°, ∴∠ABC+∠ACB=180°-60°=120°,
∵BE、CE分别为∠ABC、∠ACB的平分线, ∴∠EBC=
∠ABC,∠ECB=
∠ACB,
∴∠EBC+∠ECB=
(∠ABC+∠ACB)=
×120°=60°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-60°=120°,故①正确;
如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,
∵BE、CE分别为∠ABC、∠ACB的平分线, ∴AD为∠BAC的平分线,
∴DF=DG, ∴∠FDG=360°-90°×2-60°=120°, 又∵∠BDC=120°,
∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°, ∴∠BDF=∠CDG,
∴△BDF≌△CDG(ASA), ∴DB=CD,故②正确;
∴∠DBC=
(180°-120°)=30°, ∴∠DBE=∠DBC+∠CBE=30°+∠CBE,
∵BE平分∠ABC,AE平分∠BAC, ∴∠ABE=∠CBE,∠BAE=
∠BAC=30°,
根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,
∴DB=DE,故③正确;
∵DB=DE=DC, ∴B,C,E三点在以D为圆心,以BD为半径的圆上,
∴∠BDE=2∠BCE=∠BCA,故④正确;故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则:①∠ABO的度数是 ;
②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(2)如图3,若AB⊥OM,则是否存在这样的X的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)

-
科目: 来源: 题型:
查看答案和解析>>【题目】直线
与x轴交于点A,与y轴交于点B.点C是x轴上一动点,点D为(3,0),抛物线
过B、C、D三点.(1)如图1所示,若点C与点A关于y轴对称.
①求直线BD和抛物线的解析式;
②若点P是抛物线对称轴上一动点,当BP+CP的值最小时,求点P的坐标;
③若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标;
(2)如图2,若BE//x轴,且E(4,3),点A1与点A关于直线BC对称,当EA1的长最小时,直接写出OC的长.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如果a>b,则-ac2________-bc2(c≠0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商品的进价为每件50元,售价为每件60元,每天可卖出190件;如果每件商品的售价每上涨1元,则每天少卖10件,设每件商品的售价上涨x元,每天的销售利润为y元.
(1)求y关于x的关系式;
(2)每件商品的售价定为多少元时,每天的利润恰为1980元?
(3)每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

相关试题