【题目】如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)
![]()
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= (等量代换)
∴ ∥ ,( )
∴∠AGD+ =180°,(两直线平行,同旁内角互补)
∵∠CAB=70° ,(已知)
∴∠AGD= (等式性质)
参考答案:
【答案】答案见解析
【解析】试题分析:由EF与AD平行,利用两直线平行同位角相等得到∠2=∠3,再由
∠1=∠2,利用等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出
度数.
试题解析:∵EF∥AD,(已知)
∴∠2= ∠3 ( 两直线平行同位角相等 )
∵∠1=∠2,(已知)
∴∠1= ∠3 ( 等量代换 )
∴ DG ∥ BA ,( 内错角相等两直线平行 )
∴
(两直线平行,同旁内角互补)
∵
(已知)
∴
= 110° (等式性质)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(___ ___)
∴∠2=∠CGD(等量代换)
∴CE∥BF(__ ___)
∴∠____ ____=∠BFD(___ ____)
又∵∠B=∠C(已知)
∴____ ____(等量代换)
∴AB∥CD(___ ____)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,AB∥CD,直线EF分别交AB,CD于点G,H,GM,HN分别为∠BGE和∠DHG的平分线.
(1)试判断GM和HN的位置关系;
(2)如果GM是∠AGH的平分线,(1)中的结论还成立吗?
(3)如果GM是∠BGH的平分线,(1)中的结论还成立吗?如果不成立,你能得到什么结论?

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正五边形与一个正方形的边长正好相等,在它们相接的地方,形成一个完整的“苹果”图案(如图).如果让正方形沿着正五边形的四周滚动,并且始终保持正方形和正五边形有两条边邻接,那么第一次恢复“苹果”的图形时,正方形要绕五边形转( )圈.

A. 4 B. 3 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D、E、F、G四点在△ABC的三边上,其中DG与EF相交于点H.若 ∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=40°,则下列三角形相似的是( )

A.△BDG,△CEF B.△ABC,△CEF C.△ABC,△BDG D.△FGH,△ABC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D在边AC上,下列条件中,能判断△BDC与△ABC相似的是 ( )

A. AB·CB=CA·CD B. AB·CD=BD·BC C. BC2=AC·DC D. BD2=CD·DA
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠ABC=30°,∠ACB=50°.
(1)求∠DAE的度数;
(2)写出∠DAE与∠ACB﹣∠ABC的数量关系: ,并证明你的结论.

相关试题