【题目】如图,△ABC和△CDE均为等边三角形,且点B,C,D在同一直线上,连结AD,BE,分别交CE和AC于点G,H,连结GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想△CGH是什么特殊的三角形,并加以证明.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)△CGH是等边三角形.
【解析】
(1)证明△ACD≌△BCE即可得出答案;
(2)根据△ACD≌△BCE,
∴∠CBH=∠CAG,由∠ACB=∠ECD=60°,点B、C、D在同一条
直线上,得出∠ACB=∠ECD=∠ACG=60°
根据AC=BC即可证明;
(3)由△ACG≌△BCH,
∴CG=CH,根据∠ACG=60°即可证明.
解:(1)∵△ABC和△CDE均为等边三角形,
∴AC=BC,EC=DC,∠ACB=∠ECD=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE
(2)∵△ACD≌△BCE,
∴∠CBH=∠CAG.
∵∠ACB=∠ECD=60°,点B,C,D在同一条直线上,
∴∠ACB=∠ECD=∠ACG=60°.
又∵AC=BC,
∴△BCH≌△ACG(ASA)
(3)△CGH是等边三角形,
理由:∵△ACG≌△BCH,
∴CG=CH,
又∵∠ACG=60°,
∴△CGH是等边三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,若AQ=PQ,PR=PS,下面三个结沦:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正确的是( )

A. ①③ B. ②③ C. ①② D. ①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:
(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?
(2)请帮助物流公司设计租车方案
(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,∠B=∠C.求证:(1)AB∥CD;(2) ∠AEC=∠3.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=﹣x2﹣2bx+c,当x<2时,y的值随x的增大而增大,则实数b的取值范围是( )
A.b≥﹣1
B.b≤﹣1
C.b≥﹣2
D.b≤﹣2 -
科目: 来源: 题型:
查看答案和解析>>【题目】你会求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:
,
,
,(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=
利用上面的结论,求:
(2)22014+22013+22012+…+22+2+1的值是 .
(3)求52014+52013+52012+…+52+5+1的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式
B.平方差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
相关试题