【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的
倍,得到矩形A1OC1B1 , 再将矩形A1OC1B1以原点O为位似中心放大
倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 . ![]()
参考答案:
【答案】(﹣
,
)
【解析】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的
倍,
∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,
∵OA=2,OC=1.
∵点B的坐标为(﹣2,1),
∴点B1的坐标为(﹣2×
,1×
),
∵将矩形A1OC1B1以原点O为位似中心放大
倍,得到矩形A2OC2B2…,
∴B2(﹣2×
×
,1×
×
),
∴Bn(﹣2×
,1×
),
∵矩形AnOCnBn的对角线交点(﹣2×
×
,1×
×
),即(﹣
,
),
故答案为:(﹣
,
).
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标.本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一面积为5
的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
解:∵AD∥BC,( )
∴∠ACB+∠DAC=180° ,( )
∵∠DAC=120°,(已知)
∴∠ACB=180°﹣∠DAC= °.
∵∠ACF=20°(已知),
∴∠BCF=∠ACB﹣∠ACF= °.
∵CE平分∠BCF,
∴∠BCE=
∠BCF= °.∵EF∥AD,AD∥BC,
∴EF∥ ,( )
∴∠FEC=∠BCE= °.( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)

(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:

(1)求yB关于x的函数解析式;
(2)如果A,B两种机器人连续搬运5小时,那么B种机器人比A种机器人多搬运了多少千克?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

相关试题