【题目】如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是( )
![]()
A. 62° B. 31° C. 28° D. 25°
参考答案:
【答案】C
【解析】如图,过点E作EF⊥AB于F,
![]()
∵∠D=∠C=90°,AE平分∠DAB,
∴DE=EF,
∵E是DC的中点,
∴DE=CE,
∴CE=EF,
又∵∠C=90°,
∴点E在∠ABC的平分线上,
∴BE平分∠ABC,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴2∠BAE+2∠ABE=180°,
即∠BAE+∠ABE=90°
∴∠AEB=90°,
∴∠BEC=90°﹣∠AED=62°,
∴Rt△BCE中,∠CEB=62°,
∴∠CBE=28°,
∴∠ABE=∠CBE=28°.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为 ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=
∠MBE,∠CDN=
∠NDE,直线MB、ND交于点F,则
= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形三条高的交点一定在( )
A.三角形的内部B.三角形的外部
C.顶点上D.以上三种情况都有可能
-
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )

A. 13s B. 8s C. 6s D. 5s
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中正确的是( )
A.两个三角形的面积相等,那么这两个三角形全等
B.三个内角对应相等的两个三角形全等
C.两个等腰直角三角形全等,那么它们的斜边相等
D.两边及其中一边所对的角对应相等的两个三角形全等
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

相关试题