【题目】如图,2条直线 最多有
=1个交点,3条直线最多有
=3个交点,4条直线最多有
=6个交点,……由此猜想,8条直线最多有___个交点.
![]()
A. 32 B. 16 C. 28 D. 40
参考答案:
【答案】C
【解析】
由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.
令n条直线最多交点个数为M:
两条相交直线最多有1个交点,即n=2,M=1,
三条直线最多有3个交点,即n=3,M=3,
四条直线最多有6个交点点,即n=4,M=6,
五条直线最多有10个交点,即n=5,M=10,
…
则n条直线最多交点个数M=1+2+3+4+…+(n-1)=
,
当n=8时,
=28,
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD.

(1)判断∠FAB与∠C的大小关系,请说明理由;
(2)若∠C=35°,AB是∠FAD的平分线.
①求∠FAD的度数;
②若∠ADB=110°,求∠BDE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A、B两点的坐标分别为(2,0)、(0,4),P是△AOB外接圆⊙C上的一点,且∠AOP=45°,则点P的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)如图所示,O是直线AB上一点,∠AOC=
∠BOC,OC是∠AOD的平分线.
(1)求∠COD的度数.
(2)判断OD与AB的位置关系,并说出理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:

(1)这32名学生经过培训,考分等级“不合格”的百分比由下降到;
(2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名. -
科目: 来源: 题型:
查看答案和解析>>【题目】中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
组别
海选成绩x
A组
50≤x<60
B组
60≤x<70
C组
70≤x<80
D组
80≤x<90
E组
90≤x<100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角θ的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

相关试题