【题目】如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.
则∠A=∠F,请说明理由.
![]()
解:∵∠AGB=∠EHF
∠AGB= (对顶角相等)
∴∠EHF=∠DGF
∴DB∥EC
∴∠ =∠DBA ( 两直线平行,同位角相等)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥ (内错角相等,两直线平行)
∴∠A=∠F .
参考答案:
【答案】已知;∠DGF;同位角相等,两直线平行;C;AC;两直线平行,内错角相等
【解析】试题分析:根据对顶角相等推出同位角∠EHF=∠DGF,从而证得两直线DB∥EC;然后由平行线的性质知内错角∠DBA=∠D,即可根据平行线的判定定理得两直线DF∥AC,最后由平行线的性质证得:∠A=∠F.
试题解析:∵∠AGB=∠EHF(已知),∠AGB=∠DGF(对顶角相等),
∴∠EHF=∠DGF
∴DB∥EC(同位角相等,两直线平行),
∴∠C="∠DBA" ( 两直线平行,同位角相等);
又∵∠C=∠D(已知),
∴∠DBA=∠D(等量代换),
∴DF∥AC(内错角相等,两直线平行),
∴∠A=∠F(两直线平行,内错角相等);
-
科目: 来源: 题型:
查看答案和解析>>【题目】平行四边形、矩形、菱形、等腰三角形、正方形中是轴对称图形的有()个
A、1 B、2 C、3 D、4
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】设n为整数,下列式子中表示偶数的是( ).
A. 2n B. 2n+1 C. 2n-1 D. n+2
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中是中心对称图形,但不是轴对称图形的是( ).
A. 正方形 B. 菱形 C. 矩形 D. 平行四边形
相关试题