【题目】如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.![]()
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
参考答案:
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠ABF=∠ECF,
∵EC=DC,∴AB=EC,
在△ABF和△ECF中,
,
∴△ABF≌△ECF(AAS)
(2)证明:∵AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形
【解析】(1)先平行四边形的对边平行且相等可证明AB∥CE,且AB=CE,然后依据平行线的性质可证明∠ABF=∠ECF,最后,依据AAS可证明△ABF≌△ECF;
(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FB,从而可证明AE=BC,故此可证明四边形ABEC为矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.

(1)求y与x的函数关系式;
(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).
(1)求AO的长;
(2)求直线AC的解析式和点M的坐标;
(3)如图2,点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.
①求S与t的函数关系式;
②求S的最大值.

图1 图2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用
刻画.
(1)求二次函数解析式;
(2)若小球的落点是A,求点A的坐标;
(3)求小球飞行过程中离坡面的最大高度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。

(1)求证:四边形CMAN是平行四边形。
(2)已知DE=4,FN=3,求BN的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.

(1)根据图中提供的信息填表:格点多边形各边上的
格点的个数格点边多边形内部的
格点个数格点多边形的面积
多边形1
4
1
2
多边形2
5
2
②
多边形3
6
3
5
多边形4
①
4

一般格点多边形
m
n
S
则S=(用含m、n的代数式表示)
(2)对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图1、2是该正三角形格点中的两个多边形:设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.则S与m、n之间的关系为S=(用含m、n的代数式表示).
相关试题