【题目】如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:
,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60°. ![]()
(1)求小山的高度;
(2)求铁架的高度.(
≈1.73,精确到0.1米)
参考答案:
【答案】
(1)解:如图,过D作DF垂直于坡底的水平线BC于点F.
由已知,斜坡的坡比i=1:
,于是tan∠DBC=
,
∴坡角∠DBC=30°.
于是在Rt△DFB中,DF=DBsin30°=25,
即小山高为25米
![]()
(2)解:设铁架的高AE=x.
在Rt△AED中,已知∠ADE=60°,于是DE=
,
在Rt△ACB中,已知∠ABC=45°,
∵AC=AE+EC=AE+DF=x+25,
又BC=BF+FC=BF+DE=25
x,
由AC=BC,得x+25=25
x.
∴x=25
≈43.3,即铁架高43.3米
【解析】(1)过D作DF垂直于坡底的水平线BC于点F,再由斜坡的坡比的概念,可得坡角为30°;解Rt△DFB可得DF即山高;(2)首先根据题意分析图形;本题涉及到两个直角三角形Rt△AED与Rt△ACB,解可得AC与BC的大小,再由AC=AE+EC,进而可求出答案.
【考点精析】根据题目的已知条件,利用关于坡度坡角问题和关于仰角俯角问题的相关知识可以得到问题的答案,需要掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA;仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a-2)
+b+3=0,其中a、b为有理数,那么a= ,b= ;(2)如果(2+
)a-(1-
)b=5,其中a、b为有理数,求a+2b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB//CD,∠B=∠ADC,点E是BC边上的一点,且AE=DC.
(1)求证:△ABC≌△EAD ;
(2)如果AB⊥AC,求证:∠BAE= 2∠ACB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )

A. 120° B. 125° C. 130° D. 155°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).若点C落在AB边下方的点E处,则△ADE的周长p的取值范围是( )

A. 7<p<10 B. 5<p<10 C. 5<p<7 D. 7<p<19
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ,CP,若AQ⊥CP,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是( )

A.110°
B.80°
C.40°
D.30°
相关试题