【题目】如图15,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.
(1)求m的值;
(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且
+
=
,求b的值;
(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使S△APQ=S△BPQ,若存在,求k的值;若不存在,说明理由.
![]()
参考答案:
【答案】(1)4;(2)8;(3)不存在.
【解析】试题分析:(1)两图象有一个交点,则对应的方程组有一组解,即△=0,代入计算即可求出m的值;
(2)作出辅助线,得到△OAC∽△OPD,
+
=2,同理
+
=2,AC,BE是x2-(k+3)x+4=0两根,即可;
(3)由S△APQ=S△BPQ得到AC+BE=2PD,建立方程(k+3)2=16即可.
试题解析:(1)∵当k=1时,抛物线C与直线l只有一个公共点,
∴方程组
有且只有一组解.
消去y,得x2-4x+m=0,所以此一元二次方程有两个相等的实数根.
∴△=0,即(-4)2-4m=0.
∴m=4.
(2)如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,
则△OAC∽△OPD,∴
=
.
同理,
=
.
∵
+
=
,∴
+
=2.
∴
+
=2.
∴
+
=
,即
=
.
解方程组
得x=
,即PD=
.
由方程组
消去y,得x2-(k+3)x+4=0.
∵AC,BE是以上一元二次方程的两根,
∴AC+BE=k+3,AC·BE=4.
∴
=
.
解得b=8.
(3)不存在.理由如下:
假设存在,则当S△APQ=S△BPQ时有AP=PB,
于是PD-AC=PE-PD,即AC+BE=2PD.
由(2)可知AC+BE=k+3,PD=
,
∴k+3=2×
,即(k+3)2=16.
解得k=1(舍去k=-7).
当k=1时,A,B两点重合,△QAB不存在.
∴不存在实数k使S△APQ=S△BPQ.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A. 7 B. 7或8 C. 8或9 D. 7或8或9
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.第三组的频数是12.请你回答:

(1)本次活动共有____件作品参赛;
(2)上交作品最多的组有作品____件;
(3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?
(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上放置,随机抽出一张卡片,抽到第四组作品的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列现象中,属于平移的是( )
①小朋友在荡秋千;②打气筒打气时,活塞的运动;③钟摆的摆动;④瓶装饮料在传送带上移动.
A.①②B.①③C.②③D.②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一个外角是60°,则它的顶角的度数是__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.

(1)求证:CE=AD;
(2)当D在AB中点时,判断四边形BECD的形状,并说明理由;
(3)若D为AB中点,则当∠A=时,四边形BECD是正方形?
相关试题