【题目】已知二次函数
,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2 , 则y1、y2必须满足( )
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0
参考答案:
【答案】B
【解析】解:令
=0, 解得:x=
,
∵当自变量x取m时对应的值大于0,
∴
<m<
,
∵点(m+1,0)与(m﹣1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,
∴m﹣1的最大值在左边交点之左,m+1的最小值在右边交点之右.
∴点(m+1,0)与(m﹣1,0)均在交点之外,
∴y1<0、y2<0.
故选:B.
根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).

(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.

(1)求证:△PCE≌△EDQ;
(2)延长PC,QD交于点R.
①如图1,若∠MON=150°,求证:△ABR为等边三角形;
②如图3,若△ARB∽△PEQ,求∠MON大小和
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1 , 作P1关于点B的对称点P2 , 作点P2关于点C的对称点P3 , 作P3关于点D的对称点P4 , 作点P4关于点A的对称点P5 , 作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( )

A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC= , CD= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】①解分式方程
; ②解不等式组
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:


(1)在这次调查活动中,一共调查了名学生;
(2)“足球”所在扇形的圆心角是度;
(3)补全折线统计图.
相关试题